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Abstract 0 The aim of this study was to investigate the feasibility of
a quantitative structure−pharmacokinetic relationships (QSPKR) method
based on contemporary three-dimensional (3D) molecular characteriza-
tion and multivariate statistical analysis. For this purpose, the programs
SYBYL/CoMFA, GRID, and Pallas, in combination with the multivariate
statistical technique principal component analysis were employed to
generate a total of 16 descriptor variables for a series of 12 structurally
related adenosine A1 receptor agonists. Subsequently, the multivariate
regression method, partial least squares, was used to predict clearance
(CL), volume of distribution (VdSS) and protein binding (fraction
unbound, fU). The QSPKR models obtained could account for most
of the variation in CL, VdSS, and fU (R2 ) 0.82, 0.61 and 0.78,
respectively). Cross-validation confirmed the predictive ability of the
models (Q2 ) 0.59, 0.41 and 0.62 for CL, VdSS, and fU, respectively).
In conclusion, we have developed a multivariate 3D QSPKR model
that could adequately predict overall pharmacokinetic behavior of
adenosine A1 receptor agonists in rat. This methodology can also be
used for other classes of compounds and may facilitate the further
integration of QSPKR in drug discovery and preclinical development.

Introduction
Since the pioneering work of Hansch and co-workers,1

quantitative structure-activity relationships (QSAR) analy-
sis has become a widely used tool in the design of modern
drugs. In recent years, sophisticated alternatives for
traditional “Hansch-type” QSAR methods have been de-
veloped, in particular in the area of three-dimensional (3D)
molecular characterization and multivariate data analysis.2-4

In contrast to these developments in the QSAR field, the
vast majority of quantitative structure-pharmacokinetic
relationships (QSPKR5) studies have only focused on
univariate correlations of individual pharmacokinetic pa-
rameters with lipophilicity and ionization, and it has been
well established that log P and pKA are important deter-
minants of drug absorption, distribution, protein binding
and elimination (for example3,6-10). A major drawback of
such QSPKR models is that they provide no insight into
the influence of other physicochemical properties and
therefore their conceptual and predictive value is rather
limited. However, despite these limitations, only a few
attempts have been made to develop more comprehensive

multivariate QSPKR models that predict pharmacokinetics
on the basis of various molecular physiocochemical descrip-
tors.11,12 Furthermore, most QSPKR studies have primarily
focused on the prediction of single parameters instead of
multivariate modeling of overall pharmacokinetic behav-
ior.6 Therefore, in the present study we have started to
explore the possibilities of generating QSPKR models based
on contemporary QSAR methods of 3D molecular charac-
terization and multivariate statistical analysis. The 3D
molecular descriptor methods, SYBYL/CoMFA13 and GRID,14

in combination with the multivariate statistical techniques,
principal component analysis (PCA) and partial least
squares (PLS15,16), were used to build models for simulta-
neous prediction of the primary pharmacokinetic param-
eters, clearance (CL), volume of distribution at steady-state
(VdSS), and protein binding (fraction unbound, fU) for a
series of structurally related adenosine A1 receptor agonists
in rat. The pharmacokinetic data were obtained during the
course of a program focused on the design of partial
agonists for the adenosine A1 receptor17,18 as reported
previously.19-23

Materials and Methods
ChemicalssAll compounds used in this study are analogues

of the endogenous purine nucleoside, adenosine (Figure 1). Com-
pound 1 is the reference adenosine A1 receptor agonist, N6-
cyclopentyladenosine (CPA19). Compounds 2-4 and 5-9 are
deoxyribose20 and 8-alkylamino-substitued CPA analogues,22 re-
spectively. In addition to the CPA analogues, another widely used
adenosine A1 receptor agonist, R-N6-phenylisopropyladenosine
(R-PIA,21 10) was included as well as the novel compounds 11
and 12 as hydrophilic and lipophilic non-CPA analogues, respec-
tively.23

Pharmacokinetic ExperimentssDetails of the pharmacoki-
netic experiments have been published previously.19-23 Briefly, 2
days before experimentation, the right femoral artery and the right
jugular vein of male Wistar rat (200-250 g) were cannulated for
the collection of blood samples and administration of drugs,
respectively. Conscious, freely moving rats received an intravenous
infusion of vehicle (20% DMSO/water) or compound over 15 min.
Serial arterial blood samples were taken over a period of at least
100 min, hemolyzed immediately, and stored at -35 °C until
HPLC analysis of blood concentrations.

Compartmental analysis of blood concentration-time profiles
was performed by fitting the data to a biexponential equation from
which systemic clearance (CL) and volume of distribution at steady
state (VdSS) were calculated.19 The fraction unbound drug in blood
(fU) was determined using standard ultrafiltration methods. The
pharmacokinetic parameters for all 12 compounds included in the
study are summarized in Table 1.

Molecular ModelingsThe 3D structures of the compounds
were provided by Dr A. P. IJzerman (Division of Medicinal
Chemistry, Leiden/Amsterdam Center for Drug Research), based
on the adenosine A1 receptor model published before.24

Generation of Molecular DescriptorssIn both the SYBYL/
CoMFA13 (Molecular Modeling Software 6.3, Tripos Inc., St. Louis,
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MO) and GRID14 (Molecular Discovery Ltd., University of Oxford,
U.K.) programs, a grid large enough to enclose all the aligned
ligands is utilized. In each grid point, interactions between a probe
atom and the target molecules are calculated. SYBYL/CoMFA and
GRID use different force fields and different types of probe atoms,
and the interactions are calculated differently. Interactions ac-
counted for in the GRID force field are steric, electrostatic and
hydrogen bonding interactions represented by the Lennard-Jones
energy (Este), the Coulombic energy (Eele) and a hydrogen bonding
(Ehb) term, respectively. In contrast to SYBYL/CoMFA, where the
interaction energies (i.e., Este and Eele) are considered separately,
the sum of all the different interaction energies is calculated in
each grid point with GRID. An attractive interaction between the
probe atom and the ligand produces a negative field (Etot), whereas
a repulsive interaction is positive

Different probes reflect different types of interactions and may
selectively be included to mimic specific interactions between the
ligand and the target protein,14,25,26 and often more than one probe
is necessary for a complete description of the interactions involved
in the ligand-protein interaction.

The second type of descriptors considered were molecular
surface volumes, such as, POP1, POT0, and POM1 (see Table 2),

corresponding to the volumes (Å3) of the electrostatic potential
surfaces at the charge levels plus one, zero, and minus one,
respectively (SYBYL 6.1, Molecular Modeling Software 6.3, Tripos
Inc., St. Louis, MO).

The third type of descriptors were the electronic descriptors
[heat of formation (HEFO), electronic energy (ELEN), dipole
moment (DIPO), filled levels (FILE), and ionization potentials
(IOPO)], obtained from Mopac 6.0 (SYBYL 6.1) AM1 single point
calculations27 with the keywords SCF1, MULLIK, AM1 and T )
3600 activated (Table 2). Four steric descriptors were included in
the present investigation, namely the core-core repulsion (COCO),
molecular weight (MW) and the areas and the volumes enclosed
by the Connolly surfaces, COAR and COVO, respectively. The
Connolly surface area (solvent accessible area) is defined as the
area a theoretical water molecule (1.4 Å in diameter) produces
when it moves over the van der Waals surface of a ligand.

Finally, the log P descriptor (the logarithm of the partition
coefficient, P, between 1-octanol and water) was estimated with
the Prolog P module (CDR database) of the Pallas program (version
1.2, CompuDrug Chemistry Ltd., Budapest, Hungary), which
utilizes a modification of the method presented by Rekker and De
Kort,28 where the contributions of the hydrophobic molecular
fragment constants are added. It is well-known that different
methods of calculation may yield different theoretical estimates
of log P. Therefore, we also calculated log P with the ATOMIC5
database of the Pallas program, which is based on a modification
of the work of Ghose and Crippen.29 Although the estimates varied
slightly between the two methods, the correlation was high (r )
0.88) and the slope and intercept of the best-line fit were not
significantly different from unity and zero, respectively. Hence,
for the sake of simplicity only estimates based on the CDR
database were used in the present analysis, and the log P
parameter should be interpreted as such. In other cases, however,
it might be advantageous to include several log P estimates
calculated by different methods in the model.

Principal Component Analysis (PCA)sPrincipal component
analysis (PCA) was used in the first stage of the study to replace
the original molecular descriptors generated in the GRID program
by so-called “3D principal properties” (3DPPs, see Results) and to
summarize in a graphical manner the information contained in
the dataset. Details of PCA can be found in numerous refer-
ences.15,16 Briefly, let X be a matrix with m rows and n columns,
representing a dataset of m compounds with n descriptor variables
(X ) [x1 , x2 , ....., xn ]). In PCA, the original n descriptors in X are
replaced by a limited number (a) of new variables, called principal
components (PCs), which are linear combinations of the columns
in X. Algebraically, PCA decomposes X in a PCs as follows

where the ti and pi vectors are known as the principal components
scores and variable loadings, respectively, and E is the residual
matrix not described by the model. Each consecutive PC is
calculated orthogonal to all previous PCs and accounts for a
decreasing percentage of the variation in X. The purpose of PCA
is to describe the complete dataset with less PCs than original
descriptors without significant loss of information. Plots of scores
and loadings obtained from the first few PCs can then be made to
reveal the relationships between objects (compounds) and variables
(descriptors), respectively.

Partial Least Squares (PLS) RegressionsPartial least
squares (PLS) is a relatively new multivariate statistical method
that has become the most widely used regression tool in the area
of QSAR.16 PLS is a generalization of ordinary multiple linear
regression (MLR) and can be seen as a least-squares regression
extension of PCA. Like MLR, PLS aims to provide a statistical
model that describes biological properties (y) in terms of the
descriptor variables in matrix X. In contrast to MLR, PLS can deal
with high correlations between the descriptor variables in X
(collinearity) and with the situation where the number of descrip-
tors exceeds the number of compounds (n > m), which is often
the case in QSAR/QSPKR). A detailed description of the PLS
algorithm can be found in the review by Geladi and Kowalski.15

For the interpretation of the model, it is particularly useful that
PLS models can be expressed in terms of regression coefficients
(bPLS):

Figure 1sChemical structure of the adenosine A1 receptor agonists. For the
sake of clarity, only the modifications compared with the reference compound
1 (CPA) are indicated.

Table 1sPharmacokinetic Parameters for the Adenosine A1 Receptor
Agonistsa

compounda CL (mL/min/kg)b VdSS (mL/kg)c fU (%)d

1 76 320 72
2 33 1050 63
3 58 660 68
4 55 740 61
5 65 1000 24
6 81 860 16
7 92 1000 23
8 72 1190 15
9 62 1130 11

10 24 940 41
11 5.6 365 67
12 62 1155 17

a Compound numbers correspond to the chemical strucutres shown in Figure
1. b Clearance. c Volume of distribution at steady state. d Fraction unbound.

Etot ) Eele + Este + Ehb (1)

X ) t1 p1
T + t2 p2

T + ..... + ta pa
T + E (2)
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where F is the residual matrix. As in the case of MLR, the
regression coefficients can be used to determine the influence of
each variable in X in the model.30

A crucial step in the development of PLS models is the
determination of the number of significant components.4,15 Al-
though it is possible to calculate as many PLS components as the
number of descriptors in the X matrix, the use of too many
components will result in a model that fits the data well but has
poor predictability. Cross-validation has become the method of
choice to determine the optimal number of components in PLS25,26,30

and was also used in the present study. Briefly, with cross-
validation, a PLS model is developed with a group of compounds
omitted from the dataset. Subsequently, the model is used to
predict the dependent variable (ypred) for the omitted compounds
and the differences between actual (yobs) and predicted values are
calculated. This procedure is repeated several times until all
compounds have been omitted once. The predictive ability of the
model can then be quantified with the Q2 statistic:25,26,30

The optimum number of PLS components is given by the number
of components that maximizes Q2. A model with good predictive
capability will have a Q2 close to unity, whereas a negative value
for Q2 indicates that the model does not predict better than
random. Formally, real predictability can only be validated with
an external test set, which is not included in the calibration process
of the model. However, even in QSAR studies in which it is usually
easier to test a large number of compounds than in pharmacoki-
netic experiments, it is common to test predictability by cross-
validation because the dataset is often too small to be split into a
training and test set. A compromise between an external test set
and leave-one-out cross-validation as used in the present study is
leave-more-out cross-validation where multiple compounds are left
out simultaneously several times, like in bootstrapping. However,
this method still requires rather large datasets and we therefore
decided to use the leave-one-out method; that is, compounds were
omitted one by one.

The Q2 value can be compared with the R2 statistic which
indicates the fraction of the variation accounted for by the model:
25,26,30

The R2 values range between zero (meaningless model) and unity
(perfect correlation). The value of R2 increases with the number
of components included in the model, and the PLS regression
model converges toward the MLR solution when the number of
components is identical to the number of variables in the X matrix.
In that case, the fraction explained variance is maximal but the
model is usually overfitted, that is, the predictability is poor (low

Q2). On the other hand, an underfitted model with too few PLS
components does not account for sufficient variation (low R2).
Eriksson and Johansson30 have suggested that a difference
between R2 and Q2 values of >0.3 is indicative of an inappropriate
model.

The outcomes of PCA and PLS are dependent on the scaling of
the variables. In the present study we always employed the auto-
scaling procedure, that is, all variables were scaled to unit variance
and centered around the mean.15

All PLS and PCA calculations were performed with the PL-
S_Toolbox version 1.5.2 (Eigenvector Research, Inc., Manson WA)
using the MATLAB software package version 4.2c.1 (The Math-
Works Inc., Natick MA).

Computer HardwaresThe generation of the 3D molecular
descriptors was carried out on a R4600 Indy Silicon Graphics
workstation. All other calculations were done on standard Pentium
personal computers.

Results

Generation and PCA of Molecular DescriptorssThe
grid created in GRID enclosed all the aligned ligands with
4 Å with a resolution of 1 Å in all directions and consisted
of 9025 points. For each of the 12 compounds, interactions
with three probes (CA2+, C3, and OH2) were calculated
at each grid point, thus yielding three grids with 9025 data
points for each compound (i.e., a total of 27 075 data points
per compound). Prior to the multivariate analysis, the grids
were unfolded to row vectors, which were subsequently
combined to form a 12 × 27 075 matrix. A PCA was
performed on this matrix to reduce this large set of data
into a smaller number of new, orthogonal (uncorrelated)
variables. The first three PCs explained 91% of the total
variance in the data, indicating that the original 27 075
GRID variables could be replaced by the score vectors
associated with these PCs without significant loss of
information. These scores vectors can be regarded as
“principal properties” (PP) of the compounds and, because
they were derived from a 3D structure analysis, will be
referred to as “3DPPs”. The 3DPPs for the first, second,
and third PC (3DPP1, 3DPP2, and 3DPP3, respectively)
are given in Table 2 together with the other descriptors,
which were obtained as described in the Methods section.

Subsequently, a PCA was performed on the combined
data of Table 2 to obtain insight into the relationships
between descriptors and compounds. One-, two-, and three-
component models described 60, 79, and 94% of the total
variance, respectively. The plot of the scores of the com-
pounds for the first two PCs reveals three clusters: the
first one with the reference ligand CPA (1), the deoxyribose

Table 2sPhysicochemical Descriptorsb Used for the QSPKR Analysis of the Adenosine A1 Receptor Agonistsa

compound
1

3DPP1
2

3DPP2
3

3DPP3
4

POP1
5

POT0
6

POM1
7

HEFO
8

ELEN
9

DIPO
10

FILE
11

IOPO
12

COAR
13

COVO
14

MW
15

COCO
16

log P

1 109.0 −40.2 14.9 1120 12 116 18 426 −27.3 −32 308 4.21 65 8.63 322.4 322.2 335.4 27 785 0.12
2 105.1 −30.2 8.5 1094 13 202 18 272 10.2 −29 569 3.36 62 8.66 317.1 313.2 319.4 25 367 0.64
3 100.9 −38.1 16.8 1232 9 511 17 683 12.4 −29 811 5.13 62 8.56 316.0 313.4 319.4 25 609 0.64
4 96.2 −33.8 5.6 1108 11 548 17 689 15.5 −29 995 3.48 62 8.65 313.9 312.0 319.4 25 793 1.22
5 −117.1 5.4 −5.1 1461 10 162 17 713 148.3 −38 336 6.96 71 7.64 334.1 337.4 364.4 33 444 0.92
6 −130.9 4.0 −5.4 1512 11 248 18 820 142.9 −40 810 7.12 74 7.63 348.2 357.0 378.4 35 763 1.44
7 −154.7 −5.5 5.6 1545 11 366 18 828 140.8 −43 295 7.08 77 7.62 363.0 374.7 392.5 38 092 1.96
8 −156.4 −3.4 −1.0 1583 12 177 19 393 185.0 −46 016 7.03 80 7.62 374.1 389.1 406.5 40 659 2.48
9 −158.2 −1.7 −1.7 1619 12 210 19 412 160.0 −48 099 7.00 82 7.62 379.5 398.9 418.5 42 613 2.63

10 93.7 131.7 63.8 1335 14 004 19 957 25.5 −38 180 4.17 74 8.63 374.2 376.0 385.4 33 119 1.11
11 112.1 51.9 −116.7 1374 12 110 18 324 −99.3 −40 984 8.70 77 8.85 364.2 361.9 423.4 35 234 −2.23
12 100.3 −40.1 14.7 1178 11 994 18 766 −41.0 −34 615 3.71 78 8.59 340.6 342.2 368.8 29 798 1.67

a Compound numbers refer to the chemical structures shown in Figure 1. b Abbreviations: 3DPP, three-dimensional principal property; COAR, area enclosed
by Connolly surface; COCO, core−core repulsion; COVO, volume enclosed by Connolly surface; DIPO, dipole moment; ELEN, electronic energy; FILE, filled
levels; HEFO, heat of formation; IOPO, ionization potential; log P, logarithm of partition coefficient; MW, molecular weight; POM1, volume of electrostatic potential
surface at charge level minus one; POP1 volume of electrostatic potential surface at charge level plus one; and POT0, volume of electrostatic potential surface
at charge level zero.

y ) XbPLS + F (3)

Q2 ) 1 - ∑ (yipred - yiobs)
2/∑ (yiobs - ymean)2 (4)

R2 ) 1 - ∑ (yicalc - yiobs)
2/∑ (yiobs - ymean)2 (5)
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analogues 2, 3, and 4, and the lipophilic non-CPA analogue
12; a second cluster with the 8-alkylamino-substitued CPA
analogues 5, 6, 7, 8, and 9; and a third cluster with R-PIA
(10) and the hydrophilic non-CPA analogue 11 (Figure 2A).
From the loading plot for the first two PCs, one clear cluster
can be recognized that contains the steric descriptors 12
(COAR), 13 (COVO), 14 (MW), and 15 (COCO), the elec-
tronic descriptors 9 (DIPO) and 10 (FILE), and the molec-
ular surface volumes 4 (POP1) and 6 (POM1, Figure 2B).
The clustering of the remaining descriptors is less clear.
It is of interest to note, however, that 3DPP1 and 3DPP2
seem to be closely associated with IOPO and POT0,
respectively (Figure 2B).

Correlation between Pharmacokinetic Parameters
and Molecular DescriptorssCorrelation coefficients
were calculated between the pharmacokinetic parameters
and each of the molecular descriptors using the MATLAB
program. All three pharmacokinetic parameters were
significantly correlated (P < 0.05) with HEFO (r ) 0.63,
0.63, and -0.75 for CL, VdSS, and fU, respectively) and log
P (r ) 0.66, 0.80 and -0.74 for CL, VdSS and fU, respec-
tively). In the case of VdSS, no other significant correlations
were found, whereas CL displayed additional significant
correlations with 3DPP1 (r ) -0.62) and IOPO (r ) -0.68),
and fU had significant correlations with 3DPP1 (r ) 0.81),

IOPO (r ) 0.81), POP1 (r ) -0.75), ELEN (r ) 0.73), FILE
(r ) -0.68), COAR (r ) -0.61), COVO (r ) -0.69), MW (r
) -0.59), and COCO (r ) -0.74).

PLS RegressionsPLS regression models to predict CL,
VdSS, and fU were built using the 16 descriptor variables
listed in Table 2. The results of the analysis are sum-
marized in Table 3 and plots of the observed versus
predicted values are shown in Figure 3. With the exception
of VdSS for 1 and fU for 12, most of the variation in the
pharmacokinetic parameters could be accounted for by the
PLS models (R2 values 0.6-0.8). Furthermore, the moder-
ate differences between R2 and Q2 (∼0.2 for each model)
found using cross-validation indicate adequate model
predictability and number of PLS components (Table 3).
The relationship between R2 and Q2 with increasing
number of PLS components is exemplified for CL in Figure
4.

Figure 5 shows the weighted PLS regression coefficients,
which provide insight into the contribution of each descrip-
tor to the modeling of the pharmacokinetic parameters. For
example, 3DPP2 (descriptor 2) has a high impact on CL
but is relatively unimportant in the models for VdSS and
fU. On the other hand, lipophilicity has considerable, but
opposite, influence on both VdSS and fU; that is, the log P
regression coefficient is positive for the former and negative
for the latter.

Discussion
To date, QSPKR studies have mainly focused on the

relationship between pharmacokinetic properties and single,
conventional physiocochemical parameters. To our knowl-
edge, this study is the first example of the application of
the molecular descriptor techniques, SYBYL/CoMFA and
GRID, in combination with multivariate analysis methods,
PCA and PLS, for the prediction of pharmacokinetic
properties. Our multivariate approach has several advan-
tages compared with the conventional methodologies em-
ployed in previously published QSPKR studies. First, the
use of a whole series of advanced molecular descriptors
instead of a single “classical” physicochemical property may
yield more comprehensive 3D QSPKR models that can
provide better insight into the relationship between chemi-
cal structure and pharmacokinetic behavior and a better
and more robust prediction. Second, our approach can be
used to predict multiple parameters and thus overall
pharmacokinetic profile. Third, this approach could allow
for integrated QSPKR-QSAR analysis and thus for simul-
taneous optimization of pharmacodynamic and pharmaco-
kinetic properties at a very early stage of drug discovery.
This integration could become a feasible strategy in the
light of the emerging in vivo high-throughput screening
technologies31-33 that could provide considerable savings
of laboratory animals, time, and money.

In the current study, QSPKR models were obtained for
the prediction of three main pharmacokinetic parameters
(CL, VdSS, and fU) of a series of 12 adenosine A1 receptor
agonists. It should be noted that the present study was
primarily focused on the development of methodology and

Figure 2sGraphical representation of the first two principal components, which
explained 79% of the total variance of the data given in Table 2. (A) Plot of
the scores of the 12 adenosine A1 receptor agonists. Numbers correspond to
the compounds shown in Figure 1. (B) Plot of the loadings of the 16 molecular
descriptors. Numbers correspond to the descriptor variables in Table 2.

Table 3sSummary of the Results of the Prediction of CL, VdSS, and
fU of the Adenosine A1 Receptor Agonists (Table 1) using PLS

pharmacokinetic
parameter

no. of
componentsa Q2 R2

CL 4 0.59 0.82
VdSS 2 0.41 0.61
fU 2 0.62 0.78

a Number of PLS components were determined using leave-one-out cross-
validation (see Methods for details).
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the number of compounds used for the modeling was
limited. However, despite the relatively small dataset, the
predictive ability of the QSPKR model as judged by leave-
one-out cross validation was fair (i.e., difference between
R2 and Q2 was ∼0.2 in each case). The between-ligand
variation in the pharmacokinetic parameters was ac-

counted for in an adequate manner by the models in most
cases (Figure 3). The exceptions were the predictions of
VdSS for CPA (1, predicted 742 mL/kg, observed 320 mL/
kg) and fU for 12 (predicted 47%, observed 17%). At present
we have no explanation for these outliers, but in the case
of CPA, the overestimation of VdSS may at least in part be
due to variability in the experimental estimate because we
have recently23 obtained a >30% higher value (421 mL/
kg). Furthermore, the use of the standard PLS algorithm
implies the assumption of a linear relationship between
molecular descriptors and pharmacokinetic parameters. If
this assumption would not be valid, nonlinear variations
of PLS might provide better predictions. However, the
nonlinear algorithms with polynomial, spline, or neural-
network inner relations as implemented in the MATLAB
PLS_Toolbox have not yet been widely applied and require
further validation.

The GRID program was used to generate 3D molecular
descriptors in this study. Because GRID generates datasets
with a very large number (27 075 in the present study) of
highly correlated variables, it is desirable to employ some
form of data pretreatment to reduce the number of
datapoints in the descriptor matrix. Because it was found
that three principal components could describe >90% of
the total variance in the GRID matrix, we decided to
replace the original variables with these principal compo-
nents (3DPPs). An advantage of the use of principal
properties, particularly when the number of compounds is
relatively small, is that it is much more efficient in reducing
the number of variables than other data pretreatment
methods generally used in conjunction with GRID, such
as D-optimal variable preselection.25,26 Furthermore, being
principal components, the 3DPPs display no collinearity.
Another advantage is that the 3DPPs can be related to
other molecular descriptors, which allows for a physico-
chemical interpretation of the GRID analysis. In the
present study, it was found that the first and second 3DPP
were closely associated with IOPO and POT0, respectively
(Figure 2B). To our knowledge, this is the first example
where such a relationship between GRID and physico-
chemical properties is shown.

A qualitative interpretation of the QSPKR models can
be made on the basis of the PLS weighted regression
coefficients (Figure 5). High values of 3DPP2 and the
related descriptor POT0, and to a lesser degree 3DPP1 and
the related descriptor IOPO, are associated with low CL.
In contrast, high values of 3DPP3 and POM1 result in an
increase of CL. The influences on CL of the remaining
molecular properties, including log P (as calculated), appear
to be less important (Figure 5A).

Figure 3sRelationship between observed and predicted (A) CL, (B) VdSS,
and (C) fU using the PLS models summarized in Table 3. The dashed lines
represent lines of identity.

Figure 4sEffect of increasing the number of PLS components in the model
for CL on the values of R2 and Q2. In this case, the optimum number of
components was found to be 4 (Table 3).
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In the case of VdSS, the high value of the regression
coefficient for log P is consistent with many previously
published reports that high lipophilicity is associated with
large VdSS.7 However, from Figure 5B it can be seen that
3DPP3 and HEFO are also important factors that are
positively correlated with VdSS, whereas increased values
of 3DPP1, IOPO, and DIPO will reduce VdSS.

Figure 5C shows that many factors contribute to the
model for fU, which would be expected on the basis of the
high number of significant correlations found previously
(see Results). The most influential factors are log P and to
a lesser degree HEFO, which are negatively correlated, and
the two related descriptors 3DPP1 and IOPO, which are
positively correlated with fU. This result confirms the
conclusion made by others that lipophilicity is a key
determinant of protein binding but that other physico-
chemical features, in particular electronic properties, also
play an important role.7

To date, MLR has been used successfully as a regression
technique in many QSPKR studies. The main disadvantage
of MLR compared with PLS is that it performs very poorly
in the case of collinearities among descriptor variables and
that it can only be applied when the number of compounds
exceeds the number of descriptors by at least a factor
3-5.15,30 Therefore, PLS has replaced MLR as method of
choice in modern QSAR studies and it may be expected that
this will also happen in the area of QSPKR when the
methods presented in this paper are developed further and
applied to large datasets with even more molecular de-
scriptors (for example original GRID points) and pharma-
cokinetic properties. The main appeal of MLR is that it may
yield models that are apparently easy to interpret. When
a dependent variable is strongly correlated with one of the
independent variables, it should, in general, be possible to
generate a simple MLR model based on the influential
descriptor and one or two additional orthogonal variables
that explain a fraction of the variation similar to that
explained by PLS. For example, on the basis of the strong
influence of log P on VdSS and fU, one can calculate the
simple MLR relationships VdSS ) 236.2 + 181.6 log P +
1.2 MW and fU ) 92.4 - 15.4 log P - 6.4 DIPO which yield
R2 values (0.67 and 0.77, respectively) that are as good as
the ones obtained with PLS (Table 3). However, the
molecular diversity of the ligands in this study was limited,
and it may be expected that the chances of finding such
simple relationships will decrease with increasing complex-
ity of the dataset. Furthermore, multivariate QSPKR
modeling should aim to predict overall pharmacokinetic
behavior, whereas MLR on the basis of a few descriptors
may only provide an adequate alternative for PLS for some
of the parameters of interest. In the present case, for
example, the best MLR model for CL on the basis of log P
and one other descriptor (CL ) 156.5 + 12.9 log P - 0.01
POT0) predicted poorly compared to PLS (R2 ) 0.65 and
0.82, respectively).

Herman and Veng-Pedersen11 have suggested that QSP-
KR models need not be limited to congeneric series but can
be used to predict distribution kinetics of a wide variety of
drugs. However, in our view, QSPKR and QSAR models
should generally be regarded as having “local validity” only,
that is, their utility is restricted to series of chemically
related ligands with similar biological properties. Hence,
we believe that QSPKR modeling may be particularly
useful to analyze pharmacokinetic databases of structural
analogues obtained in the early stages of drug development
programs. Obviously, the aim is always to develop a model
that predicts the pharmacokinetic parameters of the whole
set of compounds as well as possible. However, the limita-
tions of a QSPKR model may be just as valuable and the
outliers that are poorly predicted may provide new insight
into the mechanisms underlying the pharmacokinetic
processes. For this purpose, however, a more physiological
approach than the one used in the present study should
be adopted in which the dependent variables represent
intrinsic pharmacokinetic properties of individual organ
systems rather than overall pharmacokinetic behavior.10,34

In conclusion, in the present paper we have described a
QSPKR method based on 3D molecular characterization
and multivariate statistical analysis. By using this method,
we obtained a model that could adequately predict overall
pharmacokinetic behavior of 12 adenosine A1 receptor
ligands in rat. Notwithstanding the fact that analysis of a
larger dataset would be required to draw any general
conclusion about the pharmacokinetic behavior of adeno-
sine analogues, these first results obtained with a relatively
small number of ligands warrant further validation and
application of multivariate 3D QSPKR on larger datasets
of other classes of compounds. In combination with emerg-

Figure 5sWeighted PLS regression coefficients (bPLS) for (A) CL, (B) VdSS,
and (C) fU. Numbers correspond to the descriptor variables in Table 2.
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ing methods for high-throughput in vivo pharmacokinetic
screening of mixtures of structurally related compounds31-33

and with novel approaches in physiologically based phar-
macokinetic modeling,10,34 multivariate 3D QSPKR may
become a useful tool in drug discovery and preclinical
development.

References and Notes
1. Hansch, C.; Fujita, T. rho-sigma-pi Analysis. A method for

the correlation of biological activity and chemical structure.
J. Am. Chem. Soc. 1964, 86, 1616-1626.

2. van de Waterbeemd, H. Chemometric Methods in Molecular
Design, VCH: Weinheim, 1995.

3. Kubinyi, H. The quantitative analysis of structure-activity
relationships. In Burger’s Medicinal Chemistry and Drug
Discovery; Wolff, M. E., Ed.; John Wiley & Sons: New York,
1995; pp 497-571.

4. Kubinyi, H. QSAR and 3D QSAR in drug design. Part 2:
Applications and problems. Drug Discovery Today 1997, 2,
538-546.

5. Others have used the abbreviation “QSPR” for this purpose,
but to avoid confusion, we propose to reserve this term for
“quantitative structure-property relationships”.2

6. Toon, S.; Rowland, M. Strucure-pharmacokinetic relation-
ships among the barbiturates in the rat. J. Pharmacol. Exp.
Ther. 1983, 225, 752-763.

7. Mayer, J. M.; van de Waterbeemd, H. Development of
quantitative structure-pharmacokinetic relationships. En-
viron. Health Perspect. 1985, 61, 295-306.

8. Yamada, Y.; Ito, K.; Nakamura, K.; Sawada, Y.; Iga., T.
Prediction of therapeutic doses of beta-adrenergic receptor
blocking agents based on quantitative structure-pharmaco-
kinetic/pharmacodynamic relationship. Biol. Pharm. Bull.
1993, 16, 1251-1259.

9. Gobburu, J. V. S.; Shelver, W. H. Quantitative structure-
pharmacokinetic relationships (QSPR) of beta blockers de-
rived using neural networks. J. Pharm. Sci. 1995, 84, 862-
865.

10. Blackey, G. E.; Nestorov, I. A.; Arundel, P. A.; Aarons, L. J.;
Rowland, M. Quantitative structure-pharmacokinetics rela-
tionships: I. Development of a whole-body physiologically
based model to characterize changes in pharmacokinetics
across a homologous series of barbiturates in the rat. J.
Pharmacokinet. Biopharm. 1997, 25, 277-312.

11. Herman, R. A.; Veng-Pedersen, P. Quantitative structure-
pharmacokinetic relationships for systemic drug distribution
kinetics not confined to a congeneric series. J. Pharm. Sci.
1994, 83, 423-428.

12. Cupid, B. C.; Beddell, C. R.; Lindon, J. C.; Wilson, L. D.;
Nicholson, J. K. Quantitative structure-metabolism relation-
ships for substituted benzoic acids in the rabbit: prediction
of urinary excretion of glycine and glucuronide conjugates.
Xenobiotica 1996, 26, 157-176.

13. Cramer III, R. D.; Patterson, D. E.; Bunce, J. D. Comparative
molecular field analyses (COMFA). 1. Effects of shape on
binding of steroids to carrier proteins. J. Am. Chem. Soc.
1988, 110, 5959-5967.

14. Goodford, P. Multivariate characterization of molecules for
QSAR analysis. J. Chemom. 1996, 10, 107-117.

15. Geladi, P.; Kowalski, B. R. Partial least squares: a tutorial.
Anal. Chem. Acta 1985, 185, 1-17.

16. Cecchetti, V.; Filipponi, E.; Fravolini, A.; Tabarrini, O.;
Bonelli, D.; Clementi, M.; Cruciani, G.; Clementi, S. Chemo-
metric methodologies in a quantitative structure-activity
relationship study: the antibacterial activity of 6-aminoqui-
nolones. J. Med. Chem. 1997, 40, 1698-1706.

17. IJzerman, A. P.; van der Wenden, E. M.; Roelen, H. C. P. F.;
Mathôt, R. A. A.; Von Frijtag Drabbe Künzel, J. K. Partial
agonists for adenosine receptors. In Perspectives in Receptor
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